The Interaction of Reservoir Engineering and Geomechanics (a story)

Brian G D Smart FREng, FRSE, FIMMM, CEng

Petromall Ltd

Why is the interaction a good thing?

Assertion - Reservoir Geomechanics enables better Reservoir Engineering-related decisions regarding:-

- Reservoir characterisation including permeability stress sensitivity
- Well locations/design
- Production strategy (reservoir pressure)
- Flood directionality
- Compaction drive
- 4D seismic interpretation
- Seal integrity
- Changes in compartmentalisation
- Subsidence
- Production-induced earth tremors

All impacting recovery factor and costs, i.e. THE BOTTOM LINE (S)

- 1964-1990: BGDS's geomechanics understanding evolved mainly in the world of international coal mining and South African gold mining (Strathclyde, Cardiff, Strathclyde)
 - Possible to observe phenomena directly and take both local and remote measurements, and convey recommendations regarding tunnel and coalface support to management – rapid feedback
- 1982-2003: Migration to petroleum engineering (Strathclyde, Heriot-Watt)
 - More difficult to observe and measure phenomena, usually feedback times longer, lab tests involve fluids
- From 1982 on, thoughts, actions "Can the understanding of the geomechanics of stratified deposits developed in coal mining and gold mining be transferred to petroleum engineering" (stratified deposits with production-induced in situ stress perturbation)

The Storyboard 1970-73 Coal: a key understanding

In the mine

Example of a Model Evolution/Use

- Load rating of longwall coalface hydraulically-powered supports
- Range 180T to 1000T per unit

Longwall Coalface Hydraulically-Powered Roof Supports

The official UK model : The Detached Block

Caving observed in NSW and SA where higher rated supports required than in UK – why, how can they be specified from first principles?

New "3 Foundations" Conceptual Model

The Story Board 1975-80 Coal: The in situ stress state is anisotropic - another key understanding

The Storyboard 1990 Petroleum

Thin mudstone intervals separating sharpbased turbidite sandstones

- Effective stress changes are caused by pore pressure and temperature changes – ground deforms with structural and anisotropic σ controls
- 2. Permeability and seismic velocities are stress sensitive
- 3. Input data required
- 4. Coupled modelling required

This Conceptual Model predicts, for example, for compacting reservoirs:-

The Storyboard 1988 on – Coupled Modelling

The Storyboard 1990 on – Coupled Modelling

Begin with a Geomechanical Appraisal. Data Set:-

- Intact rock properties?
- Discontinuity (fracture) properties?
- In situ stress state(s)?
- Spreading and upscaling populating the Geomechanical Model with properties
- NB fracture distribution

The Geomechanics Work Flow

Matrix Properties with good porosity correlations

(stress-sensitive values where appropriate)

- Elastic constants E and v
- Biot's coefficient
- Failure (Fracture) Criteria
- Vp and Vs velocities
- Permeability at reservoir stress conditions

Rock Properties - Property Correlations

Populating Model - Intact Rock

Sampling Rationale - Matrix

HWU Innovative Rock Testing Equipment:-discontinuities?

Understanding and Tools Developed/Developig: Progress?

- Measure using "Reservoir Geomechanics" publications listed in OnePetro
- Compare with other Reservoir Engineering topics

Topic Publications Referenced in OnePetro

Periods with Number of Publications

% Growth Period on Period

	Reservoir Geomechanics	Wettability	Material Balance	Reservoir Simulation
1991-1995	3	468	657	3289
1996-2000	19	634	716	4569
2001-2005	85	947	887	5846
2006-2010	165	1458	1179	8602
2011-2015	455	2355	1656	12433
	Reservoir			Reservoir
	Geomechanics	Wettability	Material Balance	Simulation
1996-2000	533	35	9	39
2001-2005	347	49	24	28
2006-2010	94	54	33	47
2011-2015	176	62	40	45

Number of Publications

Topic Publications Referenced in OnePetro

Topics

The Story Board 2018

- The simple OnePetro survey suggests that reservoir geomechanics, while still a niche topic, is growing in activity as understanding and the tools required develop
- The growing petroleum reservoir engineering geomechanics fraternity comprises some majors, at least one national oil company, universities, service companies and an growing number of consulting companies
- The occurrence of reservoir "geomechanical action" has become obvious in the "extremes" e.g. in subsidence, well-loss, the management of fractured reservoirs. What about the more subtle reservoir scale effects? The challenge with this topic is the time between initiation and results.
- Pressure depletion in NS reservoirs approaching decommissioning will initiate geomechanical phenomena – at what scale and can they be used? What risks might they create?
- Reservoir geomechanics is a multi-disciplinary topic, and a shared conceptual model could accelerate its application

ACKNOWLEDGEMENTS

- Jim Somerville and Colleagues in the Rock Mechanics Group, Heriot-Watt University.
- Former colleagues at Strathclyde University and University College Cardiff
- Support provided from the Mining and Petroleum industries

The Original Mission

The Tools Required:-

- An appropriate geomechanical conceptual model for the reservoir and surrounds
- A geomechanical appraisal of the reservoir to populate the model with data (largely the same as for well stability)
- Coupled modelling software to realise model

Figure 5 Cross section along the length of a typical longwall at the coal face (© Copyright, MSEC 2007).

